The political geography of human development

The research I did for the previous post on the inadequacy of the widely-used term ‘Global South’ led me to some surprising results about the political geography of development.

Although the relationship between latitude and human development is not linear, distance from the equator turned out to have a rather strong, although far from deterministic and not necessarily causal, link with a country’s development level, as measured by its Human Development Index (HDI). Even more remarkably, once we include indicators (dummy variables) for islands and landlocked countries, and interactions between these and distance from the equator, we can account for more than 55% of the variance in HDI (2017). In other words, with three simple geographic variables and their interactions we can ‘explain’ more than half of the variation in the level of development of all countries in the world today. Wow! The plot below (pdf) shows these relationships.

 

 

In case you are wondering whether this results is driven by many small counties with tiny populations, it is not, When we run a weighted linear regression with population size as the weight, the adjusted R-squared of the model remains still (just above) 0.50. On a sidenote, including dummies for (former) communist countries and current European Union (EU) member states pushed the R-squared above 0.60. Communist regime or legacy is associated with significantly lower HDI, net of the geographic variables, and EU membership is associated with significantly higher HDI.

The next question to consider is whether the relationship between geography and development has grown weaker or stronger over time. There are many plausible ideas we might have about the influence of globalization, the spread of information and communication technologies, wars, and financial crises on the links between geography and development. When we look at the data, however, it turns out that the strength of the link has remained roughly the same since 1990. Wow! Despite of all global social and political transformations over the past 30 years, geography still play the same, rather larger role in constraining and enabling human development. The gif below shows the same plots for 1990, 2000, 2010, and 2017. While overal development grows over time, the relationship with distance from the equator remains roughly the same, as indicated by the slopes of the linear regression lines.

 

 

Note that the way the HDI is constructed (HDI) makes changes in development over time not quite comparable (the index is capped at 1.0, so if you are an already highly developed country, there is not much scope to improve further your index). Also, the sample of countries for which there is available data is smaller in 1990 (N=144) than in 2017 (N=191).

Since we mentioned population size, let’s consider the link between the population size of a country and its level of HDI. Are small countries more successful? Does it pay off to be a large state? Maybe countries with populations that are neither too big nor too small perform best?

As the plot below (pdf) shows, there is no clear relationship between population size and HDI. The linear regression line slopes slightly downwards but the ‘effect’ is not significant and it is not really linear. The loess fit meanders up and down without a clear pattern. It turns out there is no sweet spot for population size when it comes to human development. Small populations can be just as good, and just as bad, and bigger ones. There are tiny states that are successful, and ones that do pretty badly. The same for mid-sized, big, and enormous countries (not in terms of area, but population).

 

 

This lack of relationship is quite remarkable, but there is another surprise when we look at the change in development between 2000 and 2017. As the plot below (pdf) shows, more populous countries have been more successful in improving their HDI over the past 18 years. It is not a huge difference, but given the overall small scale of the observed changes, it is significant and important.

 

 

To sum up, while in general population size is not related to development, during the past two decades more populous countries have been more successful in improving their development index. This is of course good news, as it means that more people live longer, study longer, and enjoy higher standards of living.

For now, this concludes my exploits in political geography, which turned out to harbor more insights that I expected, even when I have only explored a total of five variables. If you want to continue from here on your own, the R script for the figures is here and the datafile is here.

The ‘Global South’ is a terrible term. Don’t use it!

The Rise of the ‘Global South’

The ‘Global South‘ and ‘Global North‘ are increasingly popular terms used to categorize the countries of the world. According to Wikipedia, the term ‘Global South’ originated in postcolonial studies, and was first used in 1969. The Google N-gram chart below shows the rise of the ‘Global South’ term from 1980 till 2008, but the rise is even more impressive afterwards.

Nowadays, the Global South is used as a shortcut to anything from poor and less-developed to oppressed and powerless. Despite this vagueness, the term is prominent in serious academic publications, and it even features in the names of otherwise reputable institutions. But, its popularity notwithstanding, the ‘Global South’ is a terrible term. Here is why.

 

There is no Global South

The Global South/Global North terms are inaccurate and misleading. First, they are descriptively inaccurate, even when they refer to general notions such as (economic) development. Second, they are homogenizing, obscuring important differences between countries supposedly part of the Global South and North groups. In this respect, these terms are no better than alternatives that they are trying to replace, such as ‘the West‘ or the ‘Third World‘. Third, the Global South/Global North terms imply a geographic determinism that is wrong and demotivational. Poor countries are not doomed to be poor, because they happen to be in the South, and their geographic position is not a verdict on their developmental prospects.

 

The Global South/Global North terms are inaccurate and misleading

Let me show you just how bad these terms are. I focus on human development, broadly defined and measured by the United Nations’ Human Development Index (HDI). The HDI tracks life expectancy, education, and standard of living, so it captures more than purely economic aspects of development.

The chart below plots the geographic latitude of a country’ capital against the country’s HDI score for 2017. (Click on the image for a larger size or download a higher resolution pdf). It is quite clear that a straight line from South to North is a poor description of the relationship between geographic latitude and human development. The correlation between the two is 0.48. A linear regression of HDI on latitude returns a positive coefficient, and the R-squared as 0.23. But, as is obvious from the plot, the relationship is not linear. In fact, some of the southern-most countries on the planet, such as Australia and New Zealand, but also Chile and Argentina, are in the top ranks of human development. The best summary of the relationship between HDI and latitude is curvilinear, as indicated by the Loess (nonparametric local regression) fit.

 

 

 

You can say that we always knew that and the Global South was meant to refer to ‘distance from the equator’ rather than to absolute latitude. But, first, this is rather offensive to people in New Zealand, Australia, South Africa and the southern part of South America. And, second, there is still far from a deterministic relationship between human development and geographic position, as measured by distance from the equator. The next plot (click on the image for a larger size, download a pdf version here) shows exactly that. Now, overall, the relationship is stronger: the correlation is 0.64. And after around the 10th degree, it is also rather linear, as indicated by the match between the linear regression line and the Loess fit. Still, there is important heterogeneity within the South/close to equator and North/far from equator countries. Singapore’ HDI is almost as high as that of Sweden, despite the two being on the opposite ends of the geographic scale. Ecuador’s HDI is just above Ukraine’s, although the former is more than 50 degree closer to the equator than then latter. Gabon’s HDI is higher than Moldova’s, despite Gabon being 46 degrees further south than Moldova.

 

 

This is not to deny that there is a link between geographic position and human development. By the standards of social science, this is a rather strong correlation and fairly smooth relationship. It is remarkable that no country more the 35 degrees from the equator has an HDI lower than 0.65 (but this excludes North Korea, for which there is no HDI data provided by the UN).  But there is still important diversity in human development at different geographic zones. Moreover, the correlation between geographic position and development need to be causal, let alone deterministic.

There are good arguments to be made that geography shapes and constraints the economic and social development of nations. My personal favorite is Jared Diamond’s idea that Eurasia’s continental spread along an East-West axis made it easier for food innovations and agricultural technology to diffuse, compared to America’s continental spread along a North-South axis. But geography is not a verdict for development, as plenty of nations have demonstrated. Yet, the Global South/Global North categories suggest otherwise.

 

What to use instead?

OK, so the Global South/Global North are bad words, but what to use instead? There is no obvious substitute that is more descriptively accurate, less homogenizing and less suggestive of (geographic) determinism. But then don’t use any categorization that is so general and coarse. There is a good reason why there is no appropriate alternative term: the countries of the world are too diverse to fit into two boxes: one for South and one for North, one for developed and one for non-developed, one for powerful, and one for oppressed.

Be specific about what the term is referring to, and be concrete about the set of countries that is covered. If you mean the 20 poorest countries in the world, say the 20 poor countries in the world, not countries of the Global South. If you mean technologically underdeveloped countries, say that and not countries of the Third World. If you mean rich, former colonial powers from Western Europe, say that and not the Global North.  It takes a few more words, but it is more accurate and less misleading.

It is a bit ironic that the Global South/Global North terms are most popular among scholars and activists who are extremely sensitive about the power of words to shape public discourses, homogenize diverse populations, and support narratives that take a life of their own, influencing politics and public policy. If that’s the case, it makes it even more imperative to avoid terms that are inaccurate, homogenizing and misleading on a global scale.

If you want to look at the data yourself, the R script for the figures is here and the datafile is here.