Skip to content

Tag: explanation

Explanation and the quest for ‘significant’ relationships. Part II

In Part I I argue that the search and discovery of statistically significant relationships does not amount to explanation and is often misplaced in the social sciences because the variables which are purported to have effects on the outcome cannot be manipulated. Just to make sure that my message is not misinterpreted – I am not arguing for a fixation on maximizing R-squared and other measures of model fit in statistical work, instead of the current focus on the size and significance of individual coefficients. R-squared has been rightly criticized as a standard of how good a model is** (see for example here). But I am not aware of any other measure or standard that can convincingly compare the explanatory potential of different models in different contexts. Predictive success might be one way to go, but prediction is altogether something else than explanation. I don’t expect much to change in the future with regard to the problem I outlined. In practice, all one could hope for is some clarity on the part of the researchers whether their objective is to explain (account for) or find significant effects. The standards for evaluating progress towards the former objective (model fit, predictive success, ‘coverage’ in the QCA sense) should be different than the standards for the latter (statistical & practical significance and the practical possibility to manipulate the exogenous variables). Take the so-called garbage-can regressions, for example. These are models with tens of variables all of which are interpreted causally if they reach the magic…

Explanation and the quest for ‘significant’ relationships. Part I

The ultimate goal of social science is causal explanation*. The actual goal of most academic research is to discover significant relationships between variables. The two goals are supposed to be strongly related – by discovering (the) significant effects of exogenous (independent) variables, one accounts for the outcome of interest. In fact, the working assumption of the empiricist paradigm of social science research is that the two goals are essentially the same – explanation is the sum of the significant effects that we have discovered. Just look at what all the academic articles with ‘explanation’, ‘determinants’, and ’causes’ in their titles do – they report significant effects, or associations, between variables. The problem is that explanation and collecting significant associations are not the same. Of course they are not. The point is obvious to all uninitiated into the quantitative empiricist tradition of doing research, but seems to be lost to many of its practitioners. We could have discovered a significant determinant of X, and still be miles (or even light-years) away from a convincing explanation of why and when X occurs. This is not because of the difficulties of causal identification – we could have satisfied all conditions for causal inference from observational data, but the problem still stays. And it would not go away after we pay attention (as we should) to the fact that statistical significance is not the same as practical significance. Even the discovery of convincingly-identified causal effects, large enough to be of practical rather than only statistical significance, does not amount to explanation. A successful explanation needs to account for…

Writing with the rear-view mirror

Social science research is supposed to work like this: 1) You want to explain a certain case or a class of phenomena; 2) You develop a theory and derive a set of hypotheses; 3) You test the hypotheses with data; 4) You conclude about the plausibility of the theory; 5) You write a paper with a structure (research question, theory, empirical analysis, conclusions) that mirrors the steps above. But in practice, social science research often works like this: 1) You want to explain a certain case or a class of phenomena; 2) You test a number hypotheses with data; 3) You pick the hypotheses that matched the data best and combine them in a theory; 4) You conclude that this theory is plausible and relevant; 5) You write a paper with a structure (research question, theory, empirical analysis, conclusions) that does not reflect the steps above. In short, an inductive quest for a plausible explanation is masked and reported as deductive theory-testing. This fallacy is both well-known and rather common (at least in the fields of political science and public administration). And, in my experience, it turns out to be tacitly supported by the policies of some journals and reviewers. For one of my previous research projects, I studied the relationship between public support and policy output in the EU. Since the state of the economy can influence both, I included levels of unemployment as a potential omitted variable in the empirical analysis. It turned out that lagged unemployment is positively related to the volume of policy output. In the paper, I mentioned this result in passing…